Where and When Should Sensors Move? Sampling Using the Expected Value of Information
نویسندگان
چکیده
In case of an environmental accident, initially available data are often insufficient for properly managing the situation. In this paper, new sensor observations are iteratively added to an initial sample by maximising the global expected value of information of the points for decision making. This is equivalent to minimizing the aggregated expected misclassification costs over the study area. The method considers measurement error and different costs for class omissions and false class commissions. Constraints imposed by a mobile sensor web are accounted for using cost distances to decide which sensor should move to the next sample location. The method is demonstrated using synthetic examples of static and dynamic phenomena. This allowed computation of the true misclassification costs and comparison with other sampling approaches. The probability of local contamination levels being above a given critical threshold were computed by indicator kriging. In the case of multiple sensors being relocated simultaneously, a genetic algorithm was used to find sets of suitable new measurement locations. Otherwise, all grid nodes were searched exhaustively, which is computationally demanding. In terms of true misclassification costs, the method outperformed random sampling and sampling based on minimisation of the kriging variance.
منابع مشابه
Accounting for secondary variable for the classification of mineral resources using co-kriging technique; a Case study of Sarcheshmeh porphyry copper deposit
Due to substantial effect of classification of resource models on future mine planning, one should come with an accurate method of estimation to guarantee that the minimum error is acquired in the estimation process. The known world class Cu-Mo deposit, Sarcheshmeh Porphyry deposit (central Iran) selected as the study area. The Hypogene zone of the deposit was chosen as the space in which estim...
متن کاملDesign of Dual-Purpose Treadmill and Gait Simulator Device for Veterans and Disabled People
Background and Aim: The purpose of this study was to design of dual-purpose treadmill and gait simulator device for veterans and disabled people. This device can be used by both healthy and stroke patients, spinal cord injury, Parkinson's disease, MS and people who have lost their ability to walk for a temporary period. Methods: The device design is such that the protective waistcoat has sensor...
متن کاملOptimization Model of Hirmand River Basin Water Resources in the Agricultural Sector Using Stochastic Dynamic Programming under Uncertainty Conditions
In this study, water management allocated to the agricultural sector’ was analyzed using stochastic dynamic programming under uncertainty conditions. The technical coefficients used in the study referred to the agricultural years, 2013-2014. They were obtained through the use of simple random sampling of 250 farmers in the region for crops wheat, barley, melon, watermelon and ruby grapes under ...
متن کاملTheory of Choice in Bandit, Information Sampling and Foraging Tasks
Decision making has been studied with a wide array of tasks. Here we examine the theoretical structure of bandit, information sampling and foraging tasks. These tasks move beyond tasks where the choice in the current trial does not affect future expected rewards. We have modeled these tasks using Markov decision processes (MDPs). MDPs provide a general framework for modeling tasks in which deci...
متن کاملImprovement of Navigation Accuracy using Tightly Coupled Kalman Filter
In this paper, a mechanism is designed for integration of inertial navigation system information (INS) and global positioning system information (GPS). In this type of system a series of mathematical and filtering algorithms with Tightly Coupled techniques with several objectives such as application of integrated navigation algorithms, precise calculation of flying object position, speed and at...
متن کامل